旧版入口
|
English
太阳集团新闻
博士生李志伟的论文在REMOTE SENSING OF ENVIRONMENT 刊出
发布时间:2017-04-14     发布者:yz         审核者:     浏览次数:

标题:Multi-feature combined cloud and cloud shadow detection in GaoFen-1 wide field of view imagery作者:Li, ZW (Li, Zhiwei); Shen, HF (Shen, Huanfeng); Li, HF (Li, Huifang); Xia, GS (Xia, Guisong); Gamba, P (Gamba, Paolo); Zhang, LP (Zhang, Liangpei)

来源出版物:REMOTE SENSING OF ENVIRONMENT 卷:191页码:342-358 DOI:10.1016/j.rse.2017.01.026 出版年:MAR 15 2017

摘要:The wide field of view (WFV) imaging system onboard the Chinese GaoFen-1 (GF-1) optical satellite has a 16-m resolution and four-day revisit cycle for large-scale Earth observation. The advantages of the high temporal-spatial resolution and the wide field of view make the GF-1 WFV imagery very popular. However, cloud cover is an inevitable problem in GF-1 WFV imagery, which influences its precise application. Accurate cloud and cloud shadow detection in GF-1 WFV imagery is quite difficult due to the fact that there are only three visible bands and one near-infrared band. In this paper, an automatic multi-feature combined (MFC) method is proposed for cloud and cloud shadow detection in GF-1 WFV imagery. The MFC algorithm first implements threshold segmentation based on the spectral features and mask refinement based on guided filtering to generate a preliminary cloud mask. The geometric features are then used in combination with the texture features to improve the cloud detection results and produce the final cloud mask. Finally, the cloud shadow mask can be acquired by means of the cloud and shadow matching and follow-up correction process. The method was validated using 108 globally distributed scenes. The results indicate that MFC performs well under most conditions, and the average overall accuracy of MFC cloud detection is as high as 96.8%. In the contrastive analysis with the official provided cloud fractions, MFC shows a significant improvement in cloud fraction estimation, and achieves a high accuracy for the cloud and cloud shadow detection in the GF-1 WFV imagery with fewer spectral bands. The proposed method could be used as a preprocessing step in the future to monitor land-cover change, and it could also be easily extended to other optical satellite imagery which has a similar spectral setting.

入藏号: WOS:000397360500026

文献类型:Article

语种:English

作者关键词: Cloud detection; Cloud shadow; GF-1; Multiple features; MFC

扩展关键词: AUTOMATED CLOUD; LANDSAT IMAGERY; SNOW DETECTION; ALGORITHM; REMOVAL; CLASSIFICATION; RECOGNITION; EXTRACTION; RESOLUTION; PRODUCTS

通讯作者地址:Shen, HF; Li, HF (reprint author), Wuhan Univ, Sch Resource & Environm Sci, Wuhan, Peoples R China.

Shen, HF (reprint author), Collaborat Innovat Ctr Geospatial Technol, Wuhan, Peoples R China.

Shen, HF (reprint author), Wuhan Univ, Key Lab Geog Informat Syst, Minist Educ, Wuhan, Peoples R China.

电子邮件地址:shenhf@whu.edu.cn; huifangli@whu.edu.cn

地址:

[Li, Zhiwei; Shen, Huanfeng; Li, Huifang] Wuhan Univ, Sch Resource & Environm Sci, Wuhan, Peoples R China.

[Shen, Huanfeng; Zhang, Liangpei] Collaborat Innovat Ctr Geospatial Technol, Wuhan, Peoples R China.

[Shen, Huanfeng] Wuhan Univ, Key Lab Geog Informat Syst, Minist Educ, Wuhan, Peoples R China.

[Xia, Guisong; Zhang, Liangpei] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan, Peoples R China.

[Gamba, Paolo] Univ Pavia, Dept Elect, Pavia, Italy.

研究方向: Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology

ISSN:0034-4257

eISSN:1879-0704

影响因子:5.881