标题: Incorporating ecological connectivity into ecological functional zoning: A case study in the middle reaches of Yangtze River urban agglomeration
作者: Zhao, HZ (Zhao, Hongzhuo); He, JH (He, Jianhua); Liu, DF (Liu, Dianfeng); Han, Y (Han, Yuan); Zhou, ZK (Zhou, Zikang); Niu, JF (Niu, Jiefan)
来源出版物: ECOLOGICAL INFORMATICS 卷: 75 文献号: 102098 DOI: 10.1016/j.ecoinf.2023.102098 出版年: JUL 2023
摘要: Ecological functional zoning is critical for multiobjective sustainable management of social-ecological systems. However, the framework of ecological functional zoning needs to be further improved. In terms of the index system, the existing "element-structure-function" index system mainly considers the structural characteristics that have a negative impact on ecological processes, e.g., disturbances, while ignoring positive impacts, e.g., connectivity, which may weaken the role of key nodes in the ecosystem and is not conducive to regional ecological protection. In terms of research methodology, the widely used self-organizing feature mapping neural network (SOFM) produces a number of clusters that easily exceed expectations, thus increasing management difficulties. Therefore, there is an urgent need to explore new combining methods. Here, an improved index system combining ecological connectivity and ecological functions and a traditional index system including only ecological functions were constructed, and a zoning method combining a self-organizing feature mapping neural network and fuzzy mean clustering (SOFM-FCM) was used for functional zoning of the middle reaches of the Yangtze River urban agglomeration. The advantages of functional zoning incorporating ecological connectivity were verified by comparing the results of both zoning procedures before and after improvement. The results indicate that the study area could be divided into ecological conservation areas, biodiversity conservation areas, urban development areas, and grain production areas. The zoning schemes before and after the improved framework were reliable compared with the national planning scheme, but there was 20.6% inconsistency in the results after the improved framework. This was mainly manifested by the shift from biodiversity conservation areas to ecological conservation areas and from urban development areas to food production areas. This shift was more conducive to improving spatial continuity and landscape multifunctionality, thus maximizing ecological conservation, pushing back smart urban growth, and achieving food security. This study expands the research perspective concerned with ecological functional zoning, and these results can provide an important reference for regional ecological protection and related research.
作者关键词: Ecological connectivity; Ecological functional zoning; Landscape multifunctionality; SOFM-FCM algorithm
KeyWords Plus: ECOSYSTEM SERVICE BUNDLES; SELF-ORGANIZING MAPS; MULTIFUNCTIONAL LANDSCAPES; GROUNDWATER QUALITY; HABITAT QUALITY; CONSERVATION; AREAS; IDENTIFICATION; BIODIVERSITY; CHINA
地址: [Zhao, Hongzhuo; He, Jianhua; Liu, Dianfeng; Han, Yuan; Zhou, Zikang] Wuhan Univ, Sch Resource & Environm Sci, 129 Luoyu Rd, Wuhan 430079, Peoples R China.
[He, Jianhua] Minist Nat Resources, Key Lab Urban Land Resources Monitoring & Simulat, 8007 West Hongli Rd, Shenzhen 518034, Peoples R China.
[Niu, Jiefan] Hohai Univ, Coll Hydrol & Water Resources, State Key Lab Hydrol Water Resources & Hydraul Eng, Nanjing 210098, Jiangsu, Peoples R China.
通讯作者地址: He, JH (通讯作者),Wuhan Univ, Sch Resource & Environm Sci, 129 Luoyu Rd, Wuhan 430079, Peoples R China.
电子邮件地址: hjianh@whu.edu.cn
影响因子:5.1
版权所有 © 44118太阳成城集团
地址:湖北省武汉市珞喻路129号 邮编:430079
电话:027-68778381,68778284,68778296 传真:027-68778893 邮箱:sres@whu.edu.cn