首页  >  科研动态  >  正文
科研动态
博士生袁亚男的论文在CHEMICAL ENGINEERING JOURNAL刊出
发布时间:2019-02-25 09:36:13     发布者:易真     浏览次数:

标题: Enhanced oxidation of aniline using Fe(III)-S(IV) system: Role of different oxysulfur radicals

作者: Yuan, YN (Yuan, Yanan); Luo, T (Luo, Tao); Xu, J (Xu, Jing); Li, JJ (Li, Jinjun); Wu, F (Wu, Feng); Brigante, M (Brigante, Marcello); Mailhot, G (Mailhot, Gilles)

来源出版物: CHEMICAL ENGINEERING JOURNAL  : 362  : 183-189  DOI: 10.1016/j.cej.2019.01.010  出版年: APR 15 2019  

摘要: In this paper, the efficiency of Fe(III)-S(IV) system used for advanced oxidation processes (AOPs) has been investigated using aniline as a pollutant model compound in water. The chemical kinetics, influencing factors, and mechanism of aniline oxidation are examined with an emphasis on the contribution of the different oxysulfur radicals (mainly SO4 center dot- and SO5 center dot-). Our results show a significant enhancement in the efficiency of aniline oxidation observed at pH 4.0 with 1.0 mM S(IV) and 0.1 mM Fe(III) concentrations. Moreover, the degradation efficiency drastically decreases to 10% in the absence of oxygen indicating the significant role of oxygen in this type of process. Through competition kinetic experiments and radical scavenger experiments, it is shown that SO5 center dot- is responsible for about 60% of the aniline oxidation in the Fe(III)-S(IV) system under the typical conditions investigated in this work. For the first time we have determined the second order rate constant between SO5 center dot- and aniline (5.8 +/- 0.6x10(6) M-1 s(-1) (at pH 3.0) and SO4 center dot- and aniline 7.7 +/- 0.5x10(9) M-1 s(-1) (at pH 3.0)). Sequential experiments with successive additions of sulfite drastically improve the oxidation efficiency. These findings may provide a precise understanding of the overall mechanism and may have promising implications in developing a new cost-effective technology for the treatment of organic compounds-containing water. Furthermore, the results of this work help to understand the relevance and mechanism of organic contaminants oxidation by SO5 center dot-, which has not been given much attention in conventional SR-AOPs using peroxymonosulfate.

入藏号: WOS:000457863500020

语言: English

文献类型: Article

作者关键词: Aniline; Oxidation; Sulfite ions; Oxysulfur radicals; AOPs

地址: [Yuan, Yanan; Luo, Tao; Li, Jinjun; Wu, Feng] Wuhan Univ, Sch Resources & Environm Sci, Dept Environm Sci, Wuhan 430079, Hubei, Peoples R China.

[Yuan, Yanan; Brigante, Marcello; Mailhot, Gilles] Univ Clermont Auvergne, CNRS, Inst Chim Clermont Ferrand, SIGMA Clermont, F-63000 Clermont Ferrand, France.

[Xu, Jing] Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Peoples R China.

通讯作者地址: Mailhot, G (通讯作者)Univ Clermont Auvergne, CNRS, Inst Chim Clermont Ferrand, SIGMA Clermont, F-63000 Clermont Ferrand, France.

Xu, J (通讯作者)Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Peoples R China.

电子邮件地址: jingxu0506@whu.edu.cn; gilles.mailhot@uca.fr

影响因子:6.735


信息服务
学院网站教师登录 学院办公电话 学校信息门户登录

版权所有 © 44118太阳成城集团
地址:湖北省武汉市珞喻路129号 邮编:430079 
电话:027-68778381,68778284,68778296 传真:027-68778893    邮箱:sres@whu.edu.cn