首页  >  科研动态  >  正文
科研动态
博士生康瑾的论文在FRESENIUS ENVIRONMENTAL BULLETIN 刊出
发布时间:2019-02-15 15:38:33     发布者:易真     浏览次数:

标题:ADSORPTION AND CATALYTIC OXIDATION OF METHYLENE BLUE BY IRON-LOADED ACTIVATED CARBON DERIVED FROM BREWER'S YEAST

作者: Kang, J (Kang, Jin); Yang, YQ (Yang, Yinqun); Cai, JX (Cai, Junxiong); Hou, HB (Hou, Haobo)

来源出版物:FRESENIUS ENVIRONMENTAL BULLETIN  卷:27 期:12A  页码:9258-9266 出版年:2018

摘要:  The performances and mechanisms of adsorption and catalytic oxidation of methylene blue (MB) by iron loaded activated carbon (Fe/AC) derived from brewer's yeast were systematically investigated in this study. 93% of the MB adsorption was obtained within 1.0 h. The solution pH had no influence on the adsorption capacity. The maximum MB uptake was estimated to be 120.09 mg/g. The adsorption kinetics and isotherm were well described by pseudo second order kinetics and Langmuir isotherm, respectively, indicating that chemical adsorption is the main adsorption mechanism. The TOC removal efficiencies increased from 20% and 28% in oxidation of MB by O-3 and UV/O-3 to 28% and 70% in oxidation of MB by O-3/Fe/AC and UV/O-3/Fe/AC, respectively, after reaction 5 h, demonstrating the high catalytic oxidation activity of Fe/AC. Fourier transform infrared spectroscopy (FTIR) and X ray photoelectron spectroscopy (XPS) studies revealed that adsorption and catalytic oxidation of MB occurred on the Fe/AC surface and facilitated each other. Oxygen containing groups including Fe-O, CO, COC, COH and COOH in Fe/AC were involved in the MB adsorption. The presence of Fe/AC in oxidation of MB by O-3 and UV/O-3 promoted the conversion of ozone adsorbed on its surface to center dot OH radicals for mineralizing MB, while the oxidation process stimulated the generation of oxygen containing groups on the Fe/AC surface in favor of MB adsorption. Once the adsorbed MB was mineralized, the chemical adsorption mechanism would motivate aqueous MB to transfer and be adsorbed onto the Fe/AC surface for oxidation.

入藏号:WOS:000455562500067

文献类型:Article

语种:English

作者关键词: Fe/AC; MB; Adsorption; Catalytic Oxidation; FTIR; XPS

通讯作者地址: Cai, JX (reprint author), Hubei Prov Res Inst Environm Sci, 338 Bayi Rd, Wuhan 430072, Hubei, Peoples R China.

电子邮件地址:cjx@hbepb.gov.cn

地址:

[Kang, Jin; Cai, Junxiong; Hou, Haobo] Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430072, Hubei, Peoples R China.
[Kang, Jin; Cai, Junxiong] Hubei Prov Res Inst Environm Sci, 338 Bayi Rd, Wuhan 430072, Hubei, Peoples R China.
[Yang, Yinqun] Yangtze River Water Resources Protect Inst, Wuhan 430051, Hubei, Peoples R China.

影响因子:0.673


信息服务
学院网站教师登录 学院办公电话 学校信息门户登录

版权所有 © 44118太阳成城集团
地址:湖北省武汉市珞喻路129号 邮编:430079 
电话:027-68778381,68778284,68778296 传真:027-68778893    邮箱:sres@whu.edu.cn